21,765 research outputs found

    Slepton mass splittings and cLFV in the SUSY seesaw in the light of recent experimental results

    Get PDF
    Following recent experimental developments, in this study we re-evaluate if the interplay of high- and low-energy lepton flavour violating observables remains a viable probe to test the high-scale type-I supersymmetric seesaw. Our analysis shows that fully constrained supersymmetric scenarios no longer allow to explore this interplay, since recent LHC data precludes the possibility of having sizeable slepton mass differences for a slepton spectrum sufficiently light to be produced, and in association to BR(mu -> e gamma) within experimental reach. However, relaxing the strict universality of supersymmetric soft-breaking terms, and fully exploring heavy neutrino dynamics, still allows to have slepton mass splittings O(few %), for slepton masses accessible at the LHC, with associated mu -> e gamma rates within future sensitivity. For these scenarios, we illustrate how the correlation between high- and low-energy lepton flavour violating observables allows to probe the high-scale supersymmetric seesaw.Comment: 19 pages, 12 eps figures. References updated; matches version accepted by JHE

    Phenomenology of LFV at low-energies and at the LHC: strategies to probe the SUSY seesaw

    Full text link
    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) at low-energies and at the LHC. At the LHC, χ20→ℓ~ ℓ→ℓ ℓ χ10 \chi_2^0\to \tilde \ell \,\ell \to \ell \,\ell\,\chi_1^0 decays, in combination with other observables, render feasible the reconstruction of the masses of the intermediate sleptons, and hence the study of ℓi−ℓj\ell_i - \ell_j mass differences. If interpreted as being due to the violation of lepton flavour, high-energy observables, such as large slepton mass splittings and flavour violating neutralino and slepton decays, are expected to be accompanied by low-energy manifestations of LFV such as radiative and three-body lepton decays. We discuss how to devise strategies based in the interplay of slepton mass splittings as might be observed at the LHC and low-energy LFV observables to derive important information on the underlying mechanism of LFV.Comment: 6 pages, 4 figures. To appear in the proceedings of the 11th International Workshop on Tau Lepton Physics (TAU2010), Manchester, UK, 13-17 September 201

    Lepton flavour violation: physics potential of a Linear Collider

    Get PDF
    We revisit the potential of a Linear Collider concerning the study of lepton flavour violation, in view of new LHC bounds and of the (very) recent developments in lepton physics. Working in the framework of a type I supersymmetric seesaw, we evaluate the prospects of observing seesaw-induced lepton flavour violating final states of the type e \mu + missing energy, arising from e+ e- and e- e- collisions. In both cases we address the potential background from standard model and supersymmetric charged currents. We also explore the possibility of electron and positron beam polarisation. The statistical significance of the signal, even in the absence of kinematical and/or detector cuts, renders the observation of such flavour violating events feasible over large regions of the parameter space. We further consider the \mu-\mu- + E^T_miss final state in the e- e- beam option finding that, due to a very suppressed background, this process turns out to be a truly clear probe of a supersymmetric seesaw, assuming the latter to be the unique source of lepton flavour violation.Comment: 30 pages, 48 figure

    Large-angle non-Gaussianity in simulated high-resolution CMB maps

    Full text link
    A detection or nondetection of primordial non-Gaussianity by using the cosmic microwave background radiation (CMB) offers a way of discriminating inflationary scenarios and testing alternative models of the early universe. This has motivated the considerable effort that has recently gone into the study of theoretical features of primordial non-Gaussianity and its detection in CMB data. Among such attempts to detect non-Gaussianity, there is a procedure that is based upon two indicators constructed from the skewness and kurtosis of large-angle patches of CMB maps, which have been proposed and used to study deviation from Gaussianity in the WMAP data. Simulated CMB maps equipped with realistic primordial non-Gaussianity are essential tools to test the viability of non-Gaussian indicators in practice, and also to understand the effect of systematics, foregrounds and other contaminants. In this work we extend and complement the results of our previous works by performing an analysis of non-Gaussianity of the high-angular resolution simulated CMB temperature maps endowed with non-Gaussianity of the local type, for which the level of non-Gaussianity is characterized by the dimensionless parameter fNLlocalf_{\rm NL}^{\rm local}Comment: 8 pages, 3 figure

    Potential of a Linear Collider for Lepton Flavour Violation studies in the SUSY seesaw

    Full text link
    We study the potential of an e+- e- Linear Collider for charged lepton flavour violation studies in a supersymmetric framework where neutrino masses and mixings are explained by a type-I seesaw. Focusing on e-mu flavour transitions, we evaluate the background from standard model and supersymmetric charged currents to the e mu + missing E_T signal. We study the energy dependence of both signal and background, and the effect of beam polarisation in increasing the signal over background significance. Finally, we consider the mu- mu- + missing E_T final state in e- e- collisions that, despite being signal suppressed by requiring two e-mu flavour transitions, is found to be a clear signature of charged lepton flavour violation due to a very reduced standard model background.Comment: 8 pages, 5 figures. To appear in the proceedings of "DISCRETE 2012 - 3rd Symposium on Prospects in the Physics of Discrete Symmetries", Lisbon, Portugal, 3-7 December 201

    Classification of Energy Momentum Tensors in n≄5n \geq 5 Dimensional Space-times: a Review

    Full text link
    Recent developments in string theory suggest that there might exist extra spatial dimensions, which are not small nor compact. The framework of a great number of brane cosmological models is that in which the matter fields are confined on a brane-world embedded in five dimensions (the bulk). Motivated by this we review the main results on the algebraic classification of second order symmetric tensors in 5-dimensional space-times. All possible Segre types for a symmetric two-tensor are found, and a set of canonical forms for each Segre type is obtained. A limiting diagram for the Segre types of these symmetric tensors in 5-D is built. Two theorems which collect together some basic results on the algebraic structure of second order symmetric tensors in 5-D are presented. We also show how one can obtain, by induction, the classification and the canonical forms of a symmetric two-tensor on n-dimensional (n > 5) spaces from its classification in 5-D spaces, present the Segre types in n-D and the corresponding canonical forms. This classification of symmetric two-tensors in any n-D spaces and their canonical forms are important in the context of n-dimensional brane-worlds context and also in the framework of 11-D supergravity and 10-D superstrings.Comment: LaTex2e, 18 pages. To appear in Braz.J.Phys (2004

    A dense micro-cluster of Class 0 protostars in NGC 2264 D-MM1

    Full text link
    We present sensitive and high angular resolution (~1") 1.3 mm continuum observations of the dusty core D-MM1 in the Spokes cluster in NGC 2264 using the Submillimeter Array. A dense micro-cluster of seven Class 0 sources was detected in a 20" x 20" region with masses between 0.4 to 1.2 solar masses and deconvolved sizes of about 600 AU. We interpret the 1.3 mm emission as arising from the envelopes of the Class 0 protostellar sources. The mean separation of the 11 known sources (SMA Class 0 and previously known infrared sources) within D-MM1 is considerably smaller than the characteristic spacing between sources in the larger Spokes cluster and is consistent with hierarchical thermal fragmentation of the dense molecular gas in this region.Comment: Accepted for publication in the Astrophysical Journal Letter

    Linear Invariant Systems Theory for Signal Enhancement

    Get PDF
    This paper discusses a linear time invariant (LTI) systems approach to signal enhancement via projective subspace techniques. It provides closed form expressions for the frequency response of data adaptive finite impulse response eigenfilters. An illustrative example using speech enhancement is also presented.Este artigo apresenta a aplicação da teoria de sistemas lineares invariantes no tempo (LTI) na anĂĄlise de tĂ©cnicas de sub-espaço. A resposta em frequĂȘncia dos filtros resultantes da decomposição em valores singulares Ă© obtida aplicando as propriedades dos sistemas LTI
    • 

    corecore